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The motion of a spherical microcapsule freely suspended in a simple shear flow is 
afudied. The particle consists of a thin elastic spherical membrane enclosing an incom- 
pressible Newtonian viscous fluid. The motions of the internal liquid and of the 
suspending fluid are both described by Stokes equations. On the deformed surface 
of the membrane, continuity of velocities is imposed together with dynamic equilibrium 
of viscous and elastic forces. Since this problem is highly nonlinear, a regular perturba- 
tion solution is sought in the limiting case where the deviation from sphericity is small. 
In particular, the nonlinear theory of large deformation of membrane shells is expanded 
up to second-order terms. The deformation and orientation of the microcapsule are 
obtained explicitly in terms of the magnitude of the shear rate, the elastic coefficients 
of the membrane, the ratio of internal to external viscosities. It appears that the very 
viscous capsules are tilted towards the streamlines, whereas the less -viscous particles 
are oriented a t  nearly 45" to the streamlines. The tank-treading motion of the mem- 
brane around the liquid contents is predicted by the model and appears aa the conse- 
quence of a solid-body rotation superimposed upon a constant elastic deformation. 

1. Introduction 
Whenever a deformable solid is subjected to viscous forces due to  the flow of a fluid, 

it will react by altering its shape. Similarly, the very presence of the solid modifies the 
flow field until, it is hoped, a steady state is attained where the solid reaches a steady 
configuration, generally different from its original one. Such problems are usually 
highly nonlinear in essence, but there are some particular situations where a solution 
can be obtained. This is the case when the solid is so rigid that its deformation can be 
neglected in a first approximation, a t  least as regards the formulation of boundary 
conditions at  the fluid-solid interface. This is the approach taken for example to  study 
the effect of a flowing fluid, such as wind or water, on structures. Another case deals 
with large deformations or a t  least large displacements of the solid under the influence 
of an isotropic pressure (e.g. inflation or deflation of domes). In  this situation, the load . 
on the solid is particularly simple, and no viscous shearing forces are considered. The 
general case, involving large deformations of a solid under a general flow of a fluid, is 
very difficult to formulate and also to solve. One of the reasons for this is due to the fact 
that two different reference systems are needed: an Eulerian reference system for the 
fluid problem, and a Lagrangian reference eystem for the solid mechanics problem. If, 
furthermore, the solid is allowed to move freely under the influence of the fluid, then 
the switch between the Lagrangian and the Eulerian representations becomes very 
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complex indeed. Another common feature of such problems consists in the fact that 
most boundary conditions are imposed a t  the interface between the fluid and the solid, 
whose position is unknown. Finally, .the theory of large elastic deformations must 
generally be used. Unfortunately, owing to the complexity of this theory, the existing 
analytical solutions are very few, and most of them have been derived for geometrically 
simple bodies, under simple loads. 

Despite the difficulties of such problems, there have been a number of attempts to 
find a solution in some particular cases, such as the behaviour of homogeneous elastic 
solids. The case of elastic spheres suspended in a linear shear flow has been treated by 
Roscoe (1967) and by Goddard & Miller (1967) while the deformation of elastic 
spheroids in Couette flow has been studied by Lingard & Whitmore (1  974). By making 
use of lubrication theory, Lighthill (1968) and later Fitzgerald (1969) have determined 
the motion of elastic pellets through capillary tubes. Another class of such problems 
deals with the behaviour of liquid droplets freely suspended in another liquid. In  this 
case, studied by Taylor (1932), Chaffey & Brenner (1967), Frankel & Acrivos (1970), 
Barthhs-Biesel & Acrivos (1973) amongst others, the particle is a liquid continuum, 
and the interface between the two liquids can be viewed as a very particular membrane, 
infinitely shearable, but obeying Laplace’s law as regards normal stresses. 

The object of this paper is to study the behaviour of special types of particles to be 
termed microcapsules. They consist of a thin elastic solid skin, enclosing a Newtonian 
incompressible liquid. Such particles may be thought of as models of red blood cells, 
although the exact rheology of the red cell membrane is still open for discussion. They 
are also encountered in emulsions stabilized by interfacial cross-linking polymerization. 
The motion of ellipsoidal microcapsules suspended in a simple shear flow of another 
fluid has been considered by Richardson (1974), as a model of red blood cells suspen- 
sions, The linear theory of membrane deformation was used, although it is apparent 
from the results that the deformed shape of the particle is far from ellipsoidal, and that 
the flow field should be computed again. Also the influence of the internal fluid was 
neglected. 

Here, the motion of spherical microcapsules, suspended in a simple shear flow, is 
studied. The membrane of the cell has arbitrary properties, and can achieve large 
deformations. However, owing to the particular geometry chosen, an analytical 
asymptotic solution can be obtained. As a result, the solution shows how the deforma- 
tion and the orientation of the particle depend upon its physical properties. In  spite 
of the restrictive assumption made on the geometry, this model nevertheless leads to  
qualitatively interesting results, that c m  be used as a first approximation in the study 
of the deformability of red blood cells. 

First we describe the problem and give the equations of motlion and the boundary 
conditions for the fluids. In  $ 3  we review briefly the theory of large deformations 
of thin elastic membranes. The regular perturbation technique used to solve the 
problem is explained in the fourth section, while the two first approximations to the 
solution are given in the last sections. 

2. Description of the problem 
The problem consists in determining the motion of a spherical microcapsule, when 

it is freely suspended in a simple shear flow. The particle’s boundary is a thin spherical 
membrane, of diameter 2 4  and of constant thickness h in its stress-free configuration. 
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The assumption of thinness implies that h/d 4 I, and that the membrane can be 
essentially treated as a two-dimensional surface. The material of the membrane is 
assumed to be isotropic, incompressible and to have arbitrary elastic properties, 
characterized by a general elastic modulus E. Consequently the membrane is treated 
as the two-dimensional limit of a three-dimensional solid, instead of as a purely two- 
dimensional medium, which would be more general. The particle is filled with an 
incompressible Newtonian fluid of viscosity Ap. It is freely suspended in another 
Newtonian incompressible fluid of viscosity p. The suspension is then subjected to  a, 
simple shear flow of magnitude G. Under the influence of the viscous shearing forces 
applied on the particle membrane, the latter deforms until a steady shape is reached. 
This is obtained when, a t  every point of the membrane, the viscous forces are in 
dynamic equilibrium with the elastic tensions generated by the deformation. Conse- 
quently, the motion of the fluids and the deformation of the membrane are linked and 
must be solved for simultaneously. This leads to the definition of two reference frames. 
The fluid problem is referred to  an Eulerian frame, el, e,, e3, moving with the centre 
of mass of the particle. The co-ordinates of a point in this frame are denoted xi or Xi. 
The membrane problem is referred to a Lagrangian frame (al, a,, n before deformation; 
A,, A,, N after deformation), corresponding to local curvilinear co-ordinates, yi. The 
two frames are shown on figure 1. 

All quantities are first non-dimensionalized: lengths by d, velocities by Gd, stresses 
in the fluids by pG, tensions in the membrane by Eh. The Reynolds number of the flow, 
based on the particle dimensions, pGd2/p, is assumed to be much smaller than unity, so 
that inertial effects can be neglected. Consequently the motion of the fluids is described 
by the Stokes equations 

r = (xixi)*. 

Latin indices represent the values 1, 2, or 3, while Greek indices will only take the 
values 1 and 2. Einstein’s summation convention over repeated indices is used. The 
velocity and the pressure in the fluid, at position xi ,  are respectively denoted vi and p .  
Starred quantities refer to the internal liquid. The equation of the deformed surface 
of the particle is given by 

The boundary condition far from the particle is 

where, for a simple shear flow, 
e12 = e21 = R,, = - Q,, = t ,  

all other components being zero. On the deformed surface of the particle, continuity 
of velocities is required, 

Vi j eckxk + nikxk a8 r 00, 

0. 2 %  = v* = v i m )  at r = f, (2.4) 

ViNi = 0, (2.5) 
where vim) is the membrane velocity and 4 the outer normal unit vector to the surface. 

27 PLY I00 
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FIGURE 1. The co-ordinate systems. The flow problem is referred to the el, ez, e, frame, moving 
with the centre of mass of the particle. The membrane problem is referred to a local curvilinear 
frame, a,, a,, n, corresponding to spherical co-ordinates 0, 4, T.  

The final boundary condition requires that the membrane be in equilibrium under. 
the load due to viscous stresses gij and ( ~ 5  in the two fluids. Thus a t  each point of the 
membrane the components in the el, e2, e, frame of the resultant force per unit area 
are given by 

pi  = (uir-Ui*i)Nj. (2.6) 

Owing to the assumption of thinness, the variations of the elastic stresses across the 
membrane are neglected, so that these stresses, averaged over the thickness h, give 
rise to tensions shown on figure 2. The equilibrium equations are written in the 
Lagrangian reference frame linked to every point of the deformed surface, to be 
precisely defined in the following section. With respect to these axes, the tensions have 
contravariant components rap, whereas the components of the load are denoted qa and 
q3. Then, neglecting the inertia of the membrane, the condition of equilibrium can be 
written as 

where B,, is the second fundamental form of the deformed surface and where the bar 
denotes covariant differentiation, defined in berms of the Christoffel symbols I?& of the 
deformed middle surface of the membrane by 

There remains now to relate the stresses in the membrane to the displacements of its 
material points. This is the aim of the theory of finite deformations of elastic 
membranes, which is summarized in the following section. 
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A ”  

FIGURE 2. Forces acting on a membrane element. 

3. Finite deformations of elastic membranes 
The general theory of large elastic deformations and its application to shells, has 

been treated in considerable detail in two books, Green & Zerna (1954) and Green & 
Adkins (1960). In  the case of thin membranes, this theory has been reformulated by 
Corneliussen & Shield (1961) whose notation we shall use here. 

The main assumptions of shell theory, known as Kirchoff’s hypotheses, are the 
following. First the shell is thin, so that its behaviour can be reduced to that of its 
middle surface. Second, the stresses in the direction normal to the middle surface are 
neglected. Finally, elements normal to the surface before deformation remain normal 
to the surface after deformation. Then, instead of stresses in the shell body, stress 
resultants are considered. The problem can be markedly simplified by making the 
so-called membrane approximation, which consists in neglecting stress couples and 
shearing forces normal to the membrane with respect to stress resultants in the 
membrane plane. This is equivalent to neglecting the bending resistance of the 
membrane material. 

First, the metric of the middle surface in the deformed state must be specified. 
Non-dimensional quantities are used throughout. Let yl, y2 be general curvilinear 
co-ordinates of a point on the middle surface of the shell. The position vector of this 
point is a(yl, y2) before deformation and A(yl, y2) after deformation. The position 
vector of any point of the membrane is given by 

(3.1) 

with I y3( < h/2d;  n and N are the unit normal vectors to  the middle surface before and 
after deformation, k is the ratio of the thickness of the shell after deformation to the 
thickness of the shell before deformation. 

A local co-ordinate system is defined for each point, with coveriant base vectors 
given by 

1 x = a(yl, y2) +y3n 
X = A(yl, yz) + k(yl, y2) y3N in the deformed state, 
u = X - x is the displacement of each point, 

in the undeformed state, 

(3.3) 

27-2 
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We adopt here the classical notation, where a comma denotes differentiation with 
respect to ya. The covariant metric tensors of the surface before and after deformation 
are then 

while their associated determinants are respectively denoted a and A .  The contra- 
variant components of these tensors are defined in the ususl way, e.g. 

aaa = a,,.a,g and A,, = A,,.A,,, (3.4) 

where Cap is the cofactor of A,, in the determinant A .  The three invariants of the 
strain tensor may be defined as 

A Il = aaaAaa+k2, I, = 13(aaaAaF+ k-2), I3 = k2- 
a' (3.6) 

with I3 = 1 for an incompressible material. 

Christoffel symbol given by 
The metric properties of the surface are further specified by two tensors, the 

and the second fundamental form defined as 

Now, the tensions in the membrane must be related to the deformations, by means of 
the rheological equation of state of the membrane material, which, in its general elastic 
form, is given by 

where 
rap = kh[@aaa + YDaB + PAaa]/Eh, 

Dat4 = k2aaF + [&'a@ - aaa&'] A,, 

(3.9) 

(3.10) 

and where the material functions a, Y and P are related to the strain energy function 
W(Il, I,, I,) of the material by 

(3.11) 

When the solid is incompressible, W is a function of Il and I, only, and thus P cannot 
be evaluated from (3.1 1) .  It is however non-zero, since it represents the value of a W p 1 3  
for I3 = 1. However, P can be eliminated from the problem by means of the membrane 
hypothesis, 733 = 0, which is expressed by 

@ + Y(Il  - k') + Pk-2 = 0.  (3.12) 

The analytical expression of W depends on the rheological properties of the material. 
For an incompressible elastic solid, a commonly used form of W is the so-called 
Mooney equation w = c1(I1-3)+c2(&-3), . (3.13) 

where Cl and C, are constants. The case C, = 0 corresponds to an incompressible neo- 
Hookean solid. 

The problemisnow completelydefined by equations (2.1) to (2.9) and (3.1) to (3.12). 
It appears that the solution depends on two main dimensionless parameters, namely 
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the viscosity ratio A, and the ratiopGdlEh of viscous deforming forces to elastic shape- 
restoring forces. As such, though, this set of equations is highly nonlinear, since it 
constantly involves the geometry of the deformed surface. Consequently, a solution 
is sought in the special case where the shape of the microcapsule remains nearly 
spherical, and where it is possible to develop a perturbation solution. 

4. Perturbation solution of the equations 
We assume that the ratio of viscous to elastic forces, pCd/Eh, is much smaller than 

unity. This ensures that the deformations of the sphere remain small. Cox (1969) and 
Frankel & Acrivos (1970) have shown how to obtain a regular perturbation solution in 
a similar situation encountered for liquid droplets. Their method consists in expanding 
all quantities of interest, here velocities, fluid stresses, membrane tensions, membrane 
displacements, in terms of a small parameter 6 :  

8 = pGd/Eh, g < 1. 

The equation of the middle surface of the membrane of the capsule is described by 

(1) (2) 
r (x1 ,22 ,x3 )  = ~ 6 f ( x ~ , x ~ , x 3 ) ~ B 2 f ~ x ~ J x ~ ~ x ~ ) ~ ~ ~ ~  

while, for example, the velocity of the external fluid is given by 

(0) (1) 
v, = v,+svi+ .... 

The boundary conditions (2.4) and (2.5) are expanded in terms of 6, and all terms are 
evaluated for r = 1. Consequently, the O(1) continuity of velocity condition, and the 
viscous load applied on the membrane respectively become 

(0) 
V , X ,  = 0, 

p ,  = (crij - CTZ) xj. 
(0) (0) (0) 

Similarly, to O(B), the velocity condition and the viscous load are given by 

These boundary conditions are valid for all points xi of the interface, regardless of the 
initial position of the material point which is at xi at time t .  

Let us consider now the case where Eh becomes infinitely large, or e infinitely small. 
Then, the membrane, being infinitely rigid, will remain spherical. The capsule will 
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behave essentially as a solid sphere; that  is, it will take a solid-body rotation corre- 
sponding to the fluid vorticity. Consequently the O( 1) terms in the expansions of the 
internal stress and of the membrane velocity can be evaluated immediately: 

The method of solution is now clear. The first term in the expansion of the flow field 
corresponds to the shear flow around a freely rotating sphere. The stress force on each 
point of the membrane can be easily computed. However, the equations of equilibrium 
of the membrane (2.7) and (2.8) are expressed for steady state and for negligible 
membrane inertia. But, since the material of the membrane is uniform, the identity of 
the material point passing through position xi a t  a given time is irrelevant. Conse- 
quently the rotation of the membrane can be ignored when solving the equilibrium 
equation, and the displacement of each point is computed in the usual fashion. From 
the expression of this displacement, it is then possible to determine the new shape of 
the capsule, and to compute the new membrane velocity by superposing the rotational 
motion. Then, the velocity being specified everywhere on the boundary of the domain, 
the next-order approximation for the flow field is computed and the process isrepertted. 
It appears now that the perturbation technique results in decoupling the fluid and 
membrane problems, which are solved alternately. 

In  order to complete the description of the perturbation procedure, there remains 
now to  show how the theory of finite deformation of elastic membranes can be 
expanded. The method has been outlined by Lomen (1964) for a different problem, 
namely the superposition of a small deformation upon a finite deformation. This type 
of problem is often linked to the study of vibrations of stressed shells and their 
stability. In  his work, Lomen was interested only in the first term of the expansion. 
Here, we shall derive also the second term of the series as well. We shall assume, 
however, that the thickness ratio of the membrane h/d is so much smaller than E that 
the variations of stresses and deformahions across the shell are negligible. Conse- 
quently, the displacements will be evaluated on the middle surface. 

The metric properties of the membrane in its deformed state are first expanded. The 
covariant base vectors and metric tensor of the sphere are respectively denoted a,u 
and aSa. Also orthogonal curvilinear co-ordinates are chosen (e.g . usual spherical 
co-ordinates 8, 4) ; this ensures that aI2 = 0. The position vector of a point on the 
deformed middle surface is expanded as 

(1) (2) 
A = a + EA + e2A + O(e3).  

N = n+sN+O(f),  

The normal vector becomes 
(1) 

where 
(1) (1) 

(4.8) 

The metric tensor of the deformed surface is given by 
(1) (2) 

A,, = a,, + €Aap + e2AUp + O(e3), 
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where 

(4.9) 

(4.10) 

Its determinant is denoted 
(1) (2) 

A = a+eA +€SA +0(633), 

(1) (1) (1) 
A = a2241 + a11429 

(2) ( 2 )  ( 2 )  (1) 
A = a2,A11 + allA2, +det (AaB), 

det (Aag) = AllA2, - Af2. 

The contravariant components are obtained by means of definition (3.5) and me 
similarly denoted 

Aaj = aaB + eAafl + e2A@ + O(Es). 

where a = a11a2,, 

( 1 )  (1) (1 )  (1) 

(1) ( 2 )  

The strain invariants are found to be 
( 2 )  (1) 

a 

I3 = 1. 

From the incompressibility requirement and from (3.6), the thickness ratio of the 
membrane is given by 

2 2 
k-2 = 1 + s - + e 2 - + ~ ( ~ 3 ) .  a a  

The material functions 0, Y and P are expanded too and, from (3.11) and (3.12), they 
are related by 

Consequently, the expansion of the streas resultants becomes 

(4.11) 
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As should be expected, the first-order term in the expansion of the theory of large 
deformations leads to the small-deformation approximation. Furthermore, .to this 
order of approximation, all mateiials become neo-Hookean since the stress-strain 
relation, as given by (4.11), is linear and depends only on one material coefficient, 

(0) (0) 
namely @+Y. When relation (4.11) is compared 

deformations of Hookean membranes, the relation 
Young’s modulus is 

(0) (0) 
E = 3(@+Y). 

to the classical theory of small 

between the w m  @ + Y and the 
(0) (0) 

It is this value of E which is used in the non-dimensionalization process. Consequently, 
in non-dimensional form, the stress-strain relation depends now to O(e2) on only one 
additional parameter : 

Y y’ = - 
@ + Y  
(0) (0)’ 

(0) (1) 
Thus rap and rap become 

(4.12) 

Finally, the equilibrium equations of the shell as given by (2.7), (2 .8)  and (2 .9)  are 
also expanded, so that the O( 1) equilibrium condition becomes 

(4.13) 

(0) (0) 
where I?& and B,, are respectively the Christoffel symbol and the second fundamental 
form of the sphere. Similarly, to O(s), this condition becomes 

(4.14) 

( 1 )  ( 1 )  
where I?:, and B,, refer to the O ( E )  deformed surface, and are determined from the 
solution of the O(1) problem. 

This completes the description of the perturbation procedure. The successive 
approximations to  the solution are given in the following sections. 
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5. The solution of the O(1) problem 
The O(1) fluid problem is completely defined by equations (4.1) to (4.3), together 

with boundary conditions (4.7) and (2 .3) .  The deformation of the membrane is 
described by equations (4.9), (4.11) and (4.13). The curvilinear co-ordinates are the 
classical spherical co-ordinates shown on figure 1, where, to simplify notation, the 
latitude angle q5 is used for co-ordinate yl, and the azimuthal angle 0 is used for y2. 

The solution of this problem has been given by Guerlet, BarthBs-Biesel & Stoltz 
(1977) who computed the stress resultants in the membrane and the O( 1) displacement 
vector. Accordingly, the tensions in the membrane are given by 

( 0 )  (0) (0) 
2 s i n 2 0 ,  722=-~COt2q5sin2e, + 2 = ~  cot 4 cos 28. (5.1) = 6 

Furthermore a membrane point which was a t  position x at time t on the sphere is 
displaced to position X, 

(1) 
x = X + € U + 0 ( € 2 ) ,  (5 .2)  

(1) 
where u has components in the el, e,, e3 frame given by 

here & and K,, are symmetric tensors whose only non-zero components are 
respectively 

J,, = and K,, = 9. (5.4) 

r2 = 1 + 2€,X,Xm + O ( E 2 )  

or r2 = 1 + 25ex1x2 + 0(e2) .  ( 5 4  

Correspondingly the shape of the membrane becomes ellipsoidal and can be described by 

The intersection of the ellipsoid with the x,, x, plane is shown on figure 3. It appears 
that the particle is oriented a t  45' with respect to the streamlines. This orientation is 
important because, in most experimental set-ups, the particle is observed along the 
x ,  axis. Consequently, it is the projection of the particle in the x,, x3 plane which is 
measured. In  order to infer the actual deformation, it is of course necessary to know 
the angle of orientation. Another interesting feature of the O( 1) solution concerns the 
motion of the membrane around the steady ellipsoidal shape, which is explained by 
this model as the superposition of the rotational motion upon the spabially constant 
displacement. 

This model, however, presents two main drawbacks. The first is that, because of the 
special geometry chosen here, a sphere, the internal viscosity of the particle does not 
enter the first-order approximation. Consequently, the dependency of the deformation 
on A is lost. In  order to be able to evaluate the role of A, it is necessary to compute at 
least the next-order term of the expansion. The second drawback is the small range of 
validity of the first-order solution, which can be estimated in the following way. In  the 
equation of the surface ( 5 4 ,  the lateral djsplacement of a point is ignored since it is 
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FIUURE 3. First-order deformation of the sphere, 6 = 0.02. The elliptic curve represents the 
intersection of the ellipsoid with the q, 2% plane. The dotted curve is the initial sphere. 

(1) 
O(e2). However, from the expression of u,, given by (5.3), it appears that the maximum 
lateral displacement corresponds to an angular variation 

so that e cannot be much larger than 10-2, if one wants to keep small the error made by 
truncating the power series after the O(e) terms. For all these reasons, i t  was thought 
worth while to calculate the next-order term of the approximation, as will be pre- 
sented in the next section. 

However, before proceeding, it is necessary to extract some more information from 
the 0 ( 1 )  solution. First of all, now that the deformed shape is known, all its metric 
properties (first and second fundamental forms, Christoffel symbols, etc.) can be 
determined. Their expression is given in the appendix. Second, the membrane velocity 
must be computied to Ote), in order to be used afterwards as a boundary condition for 
the O(e) fluid problem. ThiP is done by superposing the rotational motion of the particle 
on the displacement of every point. Differentiating (5.2) with respect to time, we obtain 

with 

The membrane velocity appears in the boundary conditions for the O(E)  problem. 
Consequently, v\p) must be expressed in terms of the Eulerian co-ordinates, Xi/r, of 
the membrane point in its deformed position : 
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or 

vim) = ail [:] + s [3;, Q i p X I X m X ,  + 2(qm - Klm)  alp X m X ,  X i  
r=1 

- QilKlmXm + Kil QlpXp],=, + O(s2). (5.6) 

It is now possible to derive the O(e) term of the expansion. 

6. The solution of the O(s) problem 
(a )  Motion of the Jluids 

The O(s)  fluid problem is defined by the Stokes equations, with boundary conditions 

(4.4), (4.5) where v(y)  is given by (5.6). Replacing vi and f by their values obtained 
from $ 5 ,  the velocity boundary conditions for the external fluid motion become 

(1) (0) (1) 

(1) 
vi = 2 ( 4 m  - Kim) Q t p  X m  X p  Xi - Qil Klm X m  + Kit a l p  X p  

- 5 e ~ p J & X J m X ,  + 5 e p q ~ m X ~ X m X p X q X i ,  
(1) 
viXi  = 2JklQkmXlXm. 

Similarly, the boundary conditions for the internal motion are 

(1) 
V? = 2(dm-Klm) nlpXmXpX,-QilKlmXm+Kil~lpXp, 

(1) 
= 2 J k l a h x l x m .  

(1) (1) 
The expressions for vi and v;, both solutions of the Stokes equations, are given in terms 
of infinite series of spherical harmonics by Lamb (1932). The method of solution, 
explained in detail by BarthBs-Biesel(1972), consists in integrating the equations over 
a unit sphere and in taking advantage of the orthogonality conditions. Consequently 

the spherical harmonics involved in vi and v t  can be evaluated in terms of eij ,  J&, Ki, 
and Qij. Similarly, from Lamb's solution, the stress tensors in the fluids are computed: 

(1)  (1) 

(1) 
U i j x j  = $'Sd(Jikeknz) xm + 4Sd(4, ah) xm - lOsd(Kik Qkm) xm 

- 9 8 d ( J l k e k m )  xlxmxi - 16Sd(& ah) x,xmxi + 16Sd(K,,sLh) xlxmxi 
- 2OSd4(J;,e,,)X,X1XPXqXi+ 15Sd4(Ji lepq)XlXpXq,  

(1) 
Ui";. xi = h[ - (p*/h)  xi - 6sd(Jik 0,) xl + 1osd(Kik a,) xi and 

+ 19sd(&Qh)  xlxmxi- l S S d ( K ~ k Q ~ ) X ~ X m X ~ ] ,  

where Sd(Ai j )  and Sd4(Aijab) are deviators of order 2 and 4 respectively, which are 
symmetric with respect to any permutation of indices and have azero contraction with 
respect to any two indices. Consequently they are defined by 

and 
Sd(Aij) = i(Aij + Aji - @'ijAu), 

Sd4(Aijab) = $&,b + Ai,bj + 22 other terms 
- $[SUb(Aij, + Ailfl+ 10 other t e r m )  + 5 other terms] 

+-~(siisa,+si,s,+si,sj,) ( A ~ m m + 4 ~ m + ' ~ m m d l *  (6.1) 



It is this load which will determine the deformation of the shell. Consequently it should 
be expressed in terms of the initial co-ordinates zk of the material point: 

(6.3) 

Now, the load is entirely defined by the above expressions, except for an unknown 
internal pressure p*/h,  which will be determined later from the incompressibility 

(1) 
condition. The value of each component pi can be readily obtained by replacing the 
tensors in (6.2) by their values given by (5.4) and by making use of definitions (6 .1) .  

(b )  Deformation of the membrane 

The next step now consists in solving the equations of equilibrium (4.14) for the 
tensions in the membrane. However, the components of the viscous load must first be 
evaluated in the curvilinear co-ordinate system. The base vectors of this system have 
components in the el, e2, e3 frame given by 

A,r = A$ e, = (a: + df) e,. 
Consequently, the Cartesian and curvilinear components, respectively pi and qi, of 
the load are related by 

(1) (1) (1) 
P)i(zk) = 5(eikzk)r= 1 + B[P)i(xk) + 5eik(uk - ulzlXk)lt'-l + o(s2)' 

(1) 

- (0). (1) (0) (1) (1). 
(21% + e p )  e, = (qj + eqj) (a: + €A;) e,, 

where pi and pi are identical. If we introduce the tensor b{ such that 
biak - 8, 
k l -  f* 

then 

Consequently, the O(s) terms of the curvilinear components of the load are obtained - 

(1) (0) 
from (6 .5)  where pi  and p j  correspond respectively to the O(s) and O(1) terms of 
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To evaluate the O(B) equilibrium equations (4.14), it is first necessary to compute the 

contribution arising from the O( 1) terms. This is done by using the values of 7ap given 
by (5.1) and the expressions for the Christoffel tensor of the deformed surface given 

in the appendix. Finally replacing the components of qz by their expressions (6.6), the 
equilibrium equations become 

(0) 

(l! 

(1) (1) 
25 15 5 

7 4  
8711 8712 (1) (1) 

a# ae 4 
-+-+Cot# 711-c0S$ Sin# 722 = --sin# cos$(-+- sin2# 

711+sin2$722 = yi -p*+++ sin2# + 2 sin4 $ - 4 8  %sin4# cos 

+;(19h+2i)sin2# cos.28 . (6.9) 

Asshould beexpectedthe left-handsidesof (6.7), (6.8) and (6.9)areidenticalwith those 
of the O( 1) analysis, corresponding to the small deformation theory. The method for 
solving this system of equations is classical and can be found in any textbooks on shell 

analysis. It consists in replacing(& in (6.7) and (6.8) by its value obtained from (6.9). 

Then the solution to the resulting system in 711 and 712 is sought in terms of Fourier 
series in 0, with coefficients depending on #. One finds that 

1 
(l) [k (1) 

(1) (1) 

-cos2e(-6 10 - 57h+68sin2# 20 cos24 cos4e 1 . 
(2) 

Now equation (4.12) must be solved for the deformation tensor A,,, after replacing 
(1) 
7aP' by the above values, and the O( 1) quantities by their expressions given in the 
appendix. It follows that: 
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12)  

The displacement components are then related to the metric tensor AaP of the 

deformed surface. Following Lomen, the components of A are expressed in the 
curvilinear frame of the sphere: 

(2) (2) (2) 
A = wja5 = u,e,, 

where a5 are the contravafiant base vectors of the sphere. Then, equation (4.10) 
becomes 

(2) 

(6.10) 

(1) (1) 
where C,, = A,. A,. 

Equation (6.10) bas derived by Lomen (1964), except for the CaS term, which has 
to be added to take into account the higher order of the present analysis. In  component 
form, (6.10) becomes 

(6.11) 

Again, as was noted earlier, the differential system (6.11) is similar to the small 
deformation theory system of equations. Consequently, the method of solution is well 

(2) 
known. It consists, after elimination of w3, of expanding the solution in terms of a 
Fourier series in 8, with coefficients depending on $. One obtains 

(2) 
w1 = g4%os$ sin$[-7.91 - 2 Y -  (0~17+~Y' )cos~$+&(19h+26)cos28  

- (0.17 + 2 ~ ' )  sin2$ cos 481, (6.12) 

(2) 
w = $&sin2 $ [ - &( 19h + 26) sin 28 + (0-17 + 2Y') sin2 $ sin 481, (6.13) 

(c) Equation of the surface and internal pressure 
The relation between the initial and final positions of the material point is 

(6.14) 

(1) (2) x = X+EU+€2U+O(€2), (6.15) 
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where u and u are respectively defined by (5.3) and by (6.12), (6.13) and (6.14). The 
distance of the point to  the centre of the capeule is thus given by 

(1) (2) 

(1) 121 (1) (1) (1) 
r = (X.X)t = 1 +€U. x+s,[u. x + &I. u - &(u. x),] + O(sS). (6.16) 

Consequently, from (6.15) and (6.16), with respect to the e,, e,, e, frame 

Equation (6.17) can be solved by successive approximations for xi in terms of XJr. 
Replacing in (6.16) the resulting expression of xi and the O(1) tensors by their value, 
one obtains 

r = 1 + sJhxAm + s2 [ (2) w, + (&Kh Kmp - 2Jh Kmp) ra xkxp 
9.2 - x x x x  

+(-&KhKp,+2JhKp,) y4 -tO(ss). (6.18) 

(2) 
Here w3 is given by (6.14), where the difference between the polar angles of the point 
before and after determination can be ignored. Evaluating expression (6.18) in terms 
of the spherical angles 8' and #' corresponding to X,, one finally obtains the polar 
equation of the surface of the membrane: 

( 2) 

r = 1 +~~s in~q5 ' s in2e '+s~[w, -  19.92(1-cos4q5'+sin4#' cos4e')]+O(sS). (6.19) 

It is now possible to expresa the incompressibility of the microcapsule, and thus to 
infer the value ofp*. This is done by requiring the volume of the deformed capsule to be 
equal to +n: 

Replacing r by its value (6.19), the 0(a2)  incompressibility condition becomes 

jO2"Ion {t, - 19.92( 1 - C O S ~  #' + s i n 4  #' cos 40') + 39.05 sinq #'sin2 20'1 sin 9' de' d#' = 0. 

After carrying out the integration, it follows that 

1)* = 1.58 - 0.57Y'. 
25 

(2) 
Consequently the h a 1  expression for w, becomes 

- 4 . 4 1 - ~ Y + ~ 0 ~ ~ # ( 1 4 . 2 7 + 2 ' 2 " ) + ~ 0 ~ ~ # ( 2 * 6 7 + $ Y )  

209A+276sin2# cos2e- p m + g ~ ' ) s i n 4 #  cw4e), (6.20) 
+ 40 

which completes the O(s) problem. 
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7. Results and discussion 
The equation of the surface of the microcapsule is given by (6.19) and (6.20). It 

depends on three parameters, namely E ,  h and Y .  As is apparent from (6.20), this 

analysis is limited to finite values of A, since, to this order of approximation, w3 is a 
monotonically increasing function of A. Also, the elastic parameter Y' varies between 0 
and 1. The value 'I" = 0 corresponds to a neo-Hookean material, whereas the limit 
Y' = 1 corresponds to  a Mooney material such that C, = 0 and C2 = 1 (cf. equation 
(3.13)). The intersection of the surface with the el, e2 plane is studied as a function of 
A for a neo-Hookean material. On figure 4 the O(B) and 0 ( c 2 )  profiles are compared. The 
0 ( e 2 )  deformation of the surface is more pronounced than for the O(s)  ellipsoid. Two 
O(e2) profiles obtained for different values of h are shown on figure 5. It is apparent that 
the orientation of the particle depends upon A, the more viscous particles being more 
tilted towards the streamlines. Also, for large values of h or of E ,  the microcapsule 
presents a concave region, in the neighbourhood of which the membrane theory of 
shells no longer applies, and where bending moments as well as transverse shearing 
forces must be taken into account. Consequently the appearance of this concavity can 
be used to determine the range of validity of the approximation. Using this criterion, 
it is found that this limit is reached when B is about 5 x This value may 8eem 
fairly small, but the relevant small parameter is 256 rather than E .  The deformations 
attained when E is of the order of 4 x are already important. On figure 6 is shown 
the deformation of the particle, measured as the ratio (L - B ) / ( L  + B) ,  where L and B 
are respectively the length and the breadth of the deformed capsule. It appears that, 
to  this order of appxoximation, the elastic behaviour of the material has a relatively 
small influence on the deformation of the particle. For each profile, the angle BLax 
corresponding to the largest value of r was computed. On figure 7, the orientation of 
the particle, as measured by O&,,, is shown as a function of A, thus confirming the fact 
that the viscous capsules tend Go realign themselves with the streamlines. It should be 
noted that this behaviour is aimilar to that of liquid droplets. It is presently very 
difficult to compare the predictions of the model to direct experimental measurements 
of the deformation of such capsules. The only available data are related to the behaviour 
of red blood cells, but correspond to values of E which are of order 1, and thus com- 
pletely outside the range of validity of the analysis. 

This model predicts that the membrane takes a rotational motion around the steady 
deformed shape of the capsule. A similar behaviour, called ' tank-treading ', was first 
reported for red blood cells suspended in a simple shear flow by Schmid-Schonbein & 
Wells (1960). So far there has been considerable discussion regarding the exact mecha- 
nism of such tank-treading. The liquid droplet model has often been proposed, but 
recent experiments by Fischer, Stohr-Liesen & Schmid-Schonbein (1978) showthat the 
frequency of rotation of the interface is a, linear function of shear rate and is inde- 
pendent of A. This is of course in disagreement with the analysis of liquid droplets as 
given by Rumscheidt & Mason (1961). In  the microcapsule model, on the contrary, the 
angular velocity of a membrane point is exactly equal to  the shear rate for all A's. 
Indeed the tank-treading motion results from the superposition of a rotation due to 
flow vorticity and of locally constant elastic deformations due to constant viscous 
forces. A comparison with low shear experimental results of Fischer & Schmid- 
Schonbein (1  977) indicates that  the theor5tical rotational frequencies are about 1-5 

( 2) 



Motion of a microcapsule in shear flow 849 

x z  f 

d 
FIGURE 4. Deformation of the particle in the xl, x, plane. h = 1, 6 = 0.03. 

FIGURE 5. Eeformation of the particle in the q, x, plane, as a function of A ,  
E = 0.03. ......, h = 0; - , A  = 2. 

times larger than the measured ones. The discrepancy can be attributed to the 
difference in geometry between the spherical microcapsule and the normal red blood 
cell, which has the shape of a biconcave disk in its undeformed state. 

Obviously, the simple model proposed here cannot be expected to reproduce 
exactly all the striking properties of normal red blood cells. In  particular, because of 
its spherical geometry, the movement of the microcapsule evolves continuously 
from solid body rotation to tank-treading motion. The red blood cell first behaves 
as a flexible solid disk at very low shear rates, and switches abruptly to tank-treading 
motion when the shear rate and the suspending fluid viscosity are above some 
critical values ( A  > 1, G > 0.1 N m-2 as shown by Goldsmith & Marlow (1972)). 
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FIUURE 6. Deformation in the zl, x2 plane veraua B .  The effect of the material behaviour of the 
membrane. -, Neo-Hookem, Y' = 0; - - - , Mooney, Y' = 1. 
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FIGURE 7. Orientation versus 8 in the zl, z2 plane. 
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Nevertheless it is felt that this model explains in a simple fashion some aspects of 
the behaviour of human red blood cells suspended in simple shear flow. 

In  conclusion, it has been shown how the regular perturbation analysis of this 
formidable problem of microcapsule motion can be used to  reach an approximate 
solution in the asymptotic case where the deformation remains limited. This has led 
to the derivation of an asymptotic development of the large deformation theory of 
membrane shells. Of course this analysis has a limited range of validity. However, it 
gives some interesting qualitative information on the behaviour of the microcapsule 
under shear. In  particular it predicts the tank-treading motion of the membrane around 
the internal fluid contents. Furthermore, i t  indicates how the deformation and the 
orientation of the particle depend on physical properties such as its internal 
viscosity and its elastic properties. The same approach can be used to analyse the 
behaviour of such capsules when they are suspended in other types of flows. It should 
be interesting also to investigate the effect of viscoelastic properties of the membrane 
on the overall deformation of the particle. Finally this analysis can be viewed as the 
first step towards the solution of the complete problem in the general case where large 
deformations are considered. 

This work was supported by CNRS, ATP 2609. 

Appendix. Metric properties of the deformed microcapsule 
The position vector of a point of the middle surface of the membrane is given to 

(1) 
O(f4 by 

A = a + sA + O(s2) 

with a = cos6 sin# e,+sin8 sin# e,+cos# e,, 

( 1 )  
A = (Qsin~$sin28cos8+~sin#sin8)el+(~sin3#sin28sin8 

+ysin# cos6)e,+Qsin2# cos# sin28 e3. 

The first fundamental form is defined by (3.4) : 

a,, = 1, aZ2 = sin,#, al, = 0, a = sin2#, 

( 1 )  ( 1 )  
A,, = Q sin 28(3 - sin2 $), A,, = cos 28 sin 2$, 

( 1 )  
(1) A 
A,, = Q sin 28 sin2$(2 sin2 $ - 3), - = Q sin2 $ sin 28, 

a 
(1) 

det (Aab) = -2,- sin2 $(9 cos2 $ + 2 sin4 # sin2 28). 

The Christoffel symbols are defined by (3.7). 
For the sphere, the only non-zero components are 



862 D.  Barthks-Biesel 

For the ellipsoid the non-zero components are 

( 1 1  (1) ( 1 )  
r,, = -$sin 24 sin 28, rq, = - 
(11 (1) ( 1 )  
I’,, = - Y sin3 4 cos 4 sin 28, r:, = 5 sin2 4 COB 28, r;, = 4 .&I 24 sin 28. 

cos 28, r;, = -#&a 4 cos 28, 

The second fundamental form, defined by (3.8), is given by 

(0) (0) (0) 
B,, = - 1, B,, = - sina 4, B,, = 0, 

and 

(1) ( 1 )  ( 1 )  
B,, = 8 sin 28( 2 - ? sina #), B,, = 8 sin 24 cos 28, B,, = - 5 sina 4 sin 28( 1 + f sin2 4). 
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